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Recherche Scientifique, 45071 Orleans, C6dex 2, France 

Received 1 June 1990. in final form 4 April 1991 

Abstract. The aim of this paper is to make a contribution to the understanding of the 
phenomenon of the electron distribution under thecircumstances of a beam-induced charge 
build-up in a target. Such phenomena are encountered in electron-beam-assisted micro- 
analysis or in Auger electron analysis. The theoretical problem of the motion of a beam of 
charged particles in a solid is resolved by interpreting the transport equation in terms of an 
integro-differential equation. A treatment of the Boltzmann equation is developed for the 
energy dependence i n  order to predict the electron penetration in targets bombarded under 
the simultaneous influence of scattered and decelerated incident particles, The exact values 
ofthe specific momentsoftheelectron distributionin a semi-infinite medium arecalculated. 
We suggest a procedure applied to the calculation of an analytic expression characterizing 
the asymptotic trend of the electron spatial distribution at very small residual energies. The 
perturbing effectsof insulator irradiation are treated and charge deposition profilesnear the 
surface are calculated for mixed alkali silica glasses. Results are compared with previous 
data; agreement is in most cases fairly good. 

1. Introduction 

In the last few years several techniques using electron beams have been increasingly 
developed for investigations concerning condensed matter or the solid state. They are 
based on quantitative or qualitative information from secondary radiation excited by an 
electron bombardment. They concem. for example, the unknown elemental con- 
centration of a polyatomic sample. Correction factors are necessary in electron probe 
microanalysis for extracting the true information concerning the specimen. They consist 
of three terms, which account for atomic number, absorption and fluorescence effects. 
As the analysed x-rays are emitted from electrons travelling in the solid, the electron 
distribution with depth will have to be taken into account in the necessary correction 
set. A number of difficulties arise, principally in the case of the analysis of the specimen, 
which is modified under electron irradiation. Because of unresolved problems and 
untested hypotheses the correction proceduresin the presenceoftheelectric field arising 
from the charge build-up require rigorous investigations into three features of the 
problem: 

(i) the first, definitely predominant, concerns the penetration of electrons in insu- 
lating targets, which depends strongly on the charge produced at the target surface; 
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Figure 1. Schematic representation of electron 
beam penetration into a target; J(x)  is the depth 
distribution of the electrons in the target. The 
depth distribution of the electric potential V(x)  
and the electric field E(x)  in the specimen are 
created by the negative charges in the insulator 
and theirimageslocatedat the frontofthetarget. 

(ii) the second refers to the ionic mobility of some cations-the 23Na(p, @Ne 
nuclear reaction has been used by Battaglin er U! [I] to investigate the depth profile of 
sodium near the surface of soda lime silicate glasses; they have shown after electron 
irradiation an accumulation of sodium near the surface at a depth approaching that of 
the electron penetration; 

(iii) the third relates to the stability of bonds in ionic solids-Knotek and Feibelman 
[2] have provided criteria for compounds in which the cation and anion have Pauling 
electronegativity differences greater than 1.7; such solids are, for example: MOOT 
SiO1AI2O3-TiOrV2O5-, etc. 

Manyauthors[3,4] have studiedin detail thegeneral problemof multiplescattering. 
Specific analytical solutions have been given in an approximate way for several cases 
such as the penetration of electrons [5], neutrons [6] or a-particles [7] in solids, and 
radiative transfer in stars [SI. Various theories have been developed for particular 
geometrical configuration of the target: infinite [91, semi-infinite [lo] or slab [ll]. 
Isotropic 1121 or anisotropic 1131 scattering, plane or point sources [14] have also been 
discussed. More recently Biagy I151 has written a computer program that solves the 
Boltzmannequationfor particlespropagatingin gasesin the presence of bothanelectric 
and a magnetic field. At least three different approaches to the problem of multiple 
scattering of electrons have been published in the literature: 

(a) a simple combination of the paths that are followed by incident electrons upon 
entering the solid target with convenient statistical weights (161; 

(b) a simulation of many individual particle trajectories by the Monte Carlo method 

(c) a resolution of the fundamental Boltzmann transport equation [18], where the 
attempt to follow the motion of individual electrons is abandoned, being replaced by 
the treatment of the behaviour of an electron flow. 

The main objective of our investigation is to determine precisely the manner in which 
the transport equation can be applied to the electron-specimen interaction in the case 
of conductingor insulating materials, which are bombarded by particles with anincident 
energy in the range 3-30 keV as illustrated by figure 1. This situation is of peculiar 
interest because monokinetic electron beams in this energy range are used in many 
commercial spectrometers such as electron probe microanalysers. An important 
phenomenon must be considered in all the techniques using charged-particle beams 
applied to the analysis of a great variety of materials such as insulators: in this case the 
electric field created by the trapped-charge distribution modifies the electron penetration 
profile strongly. In order to avoid the spurious effectsof the charging of sample on the 
analysis of the results a general model for calculating the potential distribution has been 

[171; 
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developed. It is based on the dynamic interaction between the primary charge in the 
specimen while the secondary electrons yield positive charges near the target surface. 
Because of recombination effects of positive and negative charge densities, the variation 
in trapped charges is not a linear function of time. By using Auger lines, it is possible to 
measure the surface potential of the target: Vigouroux et al[19] have shown that the 
potential in the bombardedareaofpure amorphoussilica dependson the primary energy 
and can reach several keV. The charge build-up of the sample has at least two main 
effects on the electron propagation, as demonstrated by Monte Carlo calculations 
[20,21]; it decreases the energy of incident particles and modifies the electron tra- 
jectories in such a way that they tend to be deflected in a direction opposite to the electric 
field. The consequence is a decrease of the penetration depth of the incident particles. 
A simple approach describes an analytical method based on the determination of the 
solution of the diffusion equation. Backscattered and secondary electrons are taken into 
account for the discussion of the phenomenon of electromigration. 

2. The transport equation 

Weconsider the followingproblem: an axiallysymmetrical beam ofelectronsisnormally 
incident on the plane surface of a semi-infinite amorphous target. As the electrons move 
awayfrom the source, they lose energyandchange theirdirection. Weshall beconcerned 
withthe steady statedistributionofthe scatteredparticles. Asin any problem of multiple 
scattering two steps have to be considered: 

(i)thebasiceventofsinglescattering, whichischaracterizedby theangularscattering 
law and the energy loss law; 

(ii) the solution of the statistical problem of calculating the distribution of electrons 
after a large number of elastic or inelastic collisions. We follow the usual simplifying 
procedure of ignoring the straggling process in the energy loss of electrons and we treat 
it separately from the angular diffusion. The continuous slowing down approximation 
makes it possible to use the path length as state variable instead of energy. 

In this paper the Boltzmann transport equation has been used to calculate the 
electron distribution after elastic and inelastic scattering processes in conducting or 
insulating targets. Thiscontinuity equation isbasedon the general theoryofconservation 
of particle number [22]: the evolution with time of the electron distribution f (x ,  U, s) 
is represented by a vector in a six-dimensional space; one component arising from 
convection is given by uf(x, U ,  s) and one component is determined by the applied forces 
e(E + U x B )  f(x, U, s), including the effects of an electric field E and a magnetic field B.  
Electron charge is given by e ,  x and U are the position and the velocity vectors, respect- 
ively, and s is the path length traversed by the electrons (s is a scalar function of 
time, s( t ) ) .  In what follows we shall only treat the motion of electrons in a medium 
characterized by the presence of an electric field having a longitudinal gradient, in the 
absence of any magnetic field. The effect of the collisions is to transfer electrons from 
one element in velocity space to another. If we suppose continuous forces, we can write: 

af+div,(ufj at +div.(eEf)=N/[f(x,o',s) -f(x,u,s)]u(lu'-ul)du 

Here N is the density of scattering centres and u(p) is the well known scattering cross 
section per unit solid angle. For simplicity in describing the angular scattering we use 
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the Rutherford differential cross section with the screening parameter given by Mott 
and Massey [Z]: 

~ ( r c )  = ( z2e4/4Wd(1NI + P + 2 ~ ) ' )  (2) 

where Zis the atomic number, W is the electron energy and q accounts for the screening 
of the,nucleus by orbital electrons: 

q = me4z2f3/8Wfi' (3) 

where m is the rest mass of the electrons and h is the Planck constant, h = fi/zZ. For a 
beam of electrons, considered as uniform in the y- and r-directions, equation (1) 
simplifies to 

The angular coordinate ,U is the cosine of the angle defined by the trajectory of an 
electron and by its initial velocity, and E is the electric field, which is variable along the 
x-axis. p i s  the cosine of the scattering angle. 

If theapproximation ofsmall-angleelectronscatteringisintroducedat thisstageone 
can expand the solutionof the integro-differential transport equation in Bessel functions 
[24] whereas, in the general case of electron propagation in an infinite medium, an 
expansion in Legendre polynomials [25] is required. We have used an approximate 
expression for determining an analytical expression of the electron distribution for 
multiple scattering through infinite and semi-infinite targets. 

3. Electron distribution in an infinite conducting target 

We first examine the distribution as a function of depth for electrons deposited in an 
uncharged target; the primary beam is defocused. The transport of the charges from a 
source with a broad area in the presence of collisions can be described by the one- 
dimensional Boltzmann equation with solutions expanded in Legendre polynomials. 
Bethe er al[26] have shown that the electron density 

F(x,  s) = f ( x ,  u ,  s) du dy dz I 
of the electrons at the depth x can be considered as a solution of the diffusion equation 
(5) in the lowest order approximation of the Boltzmann equation. This equation is 
obtained as the limit of the transport equation when the electron distribution is suf- 
ficiently broad. The diffusion approximation is valid provided that the primary beam 
becomes sufficiently scattered and that the stopping power is sufticiently weak, this 
assumption is satisfied if the trajectory has a length greater than about two fifths of the 
electron transport mean free path. Kanaya era[ [27] have reported that, in accordance 
with the model of Bethe ef al. the primary beam spreads with a Gaussian behaviour as 
the penetration increases. Following Bethe it is useful to introduce the current density 
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J(x, s)  = J f ( x ,  U, s)u do dy dz. The Boltzmann equation is then integratedover all three 
directions, thus: 

aF/as = -div J .  ( 5 )  

aF/as = -f grad F f J / A  

In the same manner the integration over all directions after multiplying the Boltz- 
mann equation by U gives 

(6) 
where A is the usual electron transport mean free path which is defined as 

It is convenient to treat equation (7) by choosing s as a state variable instead of the 
energy W, we use the stopping power formula derived from the general theory of Bethe: 

dW/ds = (2nNe4Z/W) In(ZW/J). (8) 
We consider then that the propagation is assimilated to a diffusion process if F and 

J do not change considerably over one mean free path A. Consequently we can neglect 
dJ/as and combining equations (5)  and (6)  we obtain the diffusion equation: 

aF/as = MAF. (9)  
We have introduced so far the Bohr radius ah, which is the radius of the smallest 

electron orbital in the hydrogen atom, ah = fr2/me2 = 0.052917 nm. Considering the 
results of Meister [ZS] the arguments of the logarithm in the expressions (7) and (8) 
change very little with energy between 3 and 30 keV for elements with atomic number 
Z C 80, we use a linear dependence of the mean free path with the path length. Sub- 
stitution of the path length calculated from equation (7) into equation (9) yields the 
following formula for the electron transport mean free path: 

A = (so - s)/c (10) 
where so is the electron range in the target. It follows from equation (9) that the 
distribution function Fi(x, s) of the electrons deposited in an infinite target is given by a 
Gaussian distribution if the residual energy of the electrons tends to zero. This is a fair 
approximation to the steady state electron distribution for electron implantation, as 
reported by Kanaya et a1 [27]: 

F i k  S) = NACU), (11) 

N,((x), uJ denotes here the Gaussian distribution where (x) is the average pen- 
etration of the electrons and ox its variance, U: = (x2)  - (x ) * .  Below we note (x),  the 
average value of a variablex, the integral: 

(x) = / x f ( x .  U, s) dxdu. 

We are in fact interested in the asymptotic trend of the electron spatial distribution. In 
order to calculate (x) and (x2) ,  that is the first two moments of the spatial distribution in 
the infinite medium, the transport equation (4) is transformed into a double system (12) 
and (14) of linked differential equations, after a multiplication by p and by x for the 
calculation of (x) and a multiplication by p2, by p.x and byx2 for the calculation of (x2) ,  
followed by an integration over all space. 
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3.1. Mean value of the electron penetration 

d(p)/b + W/J. = 0 dG)/h = (A. (12) 
Resolving these equations, we obtain the following valuesfor the mean penetration: 

3.2. The second moment of the electron distribution 

d(pz)/h - 3@)/2v = 1/2v d(xp)/ds - (xd/J. = ( p z )  d(x2)/h = 20114 

(14) 
with 

1 - = 2nN I u(p)(l - p z )  dp. 
V 

Similarly we obtain for (x2 ) :  

Substitution of the mean free path calculated from equation (10) into equations (13) 
and (16) yieldsthe following formula for the first momentsofthedistribution ofelectrons 
in an infinite medium: 

. 

( x )  = [l/(c + l)][so -so(l - s/so)"'] 

4. Distribution of electrons in a semi-infinite conducting target 

In order to link the study of multiple scattering in infinite media to the relevant real 
investigations we consider the concrete problem of electron transport in the presence of 
boundary conditions. Carslaw and Jaeger [29] have treated the diffusion equation (5) in 
variousgeometrical and initial conditions with considerable detail. Our treatment of the 
multiple-scattering problem is limited to the consideration of a semi-infinite medium 
with the boundary conditions described by Bethe and Jacob [30]. Carslaw and Jaeger 
suppose the medium to be continuous on the negative side of the surface. By using the 
process of images of the sources, they obtain boundary conditions for the semi-infinite 
diffusion problem whose solution is deduced from that of the infinite medium by the 
superposition theorem. The boundary condition on the electron density at the target 
surface is given by stating that the electron density at the free surface is proportional to 
the electron current flowing out of the target. Bethe and Jacob have shown that, if the 
electron distribution is sufficiently smooth, the boundary condition is given by equating 
the electron distribution at the extrapolated end-point to zero, that is x = X I  = 
-0.71,%, Fsi(-0.71J., s) = 0. The source of electrons in an infinite medium may be 
considered at the mean value of the electron penetration ( x ) .  For the semi-infinite 
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medium, we put an image source of opposite sign at a point of abscissae x z  = 2x ,  - (x ) ,  
thus at the extrapolatedend-point the electron distribution isequal to zero. We can then 
conclude that the distribution F&, s) of the electrons deposited in a semi-infinite target 
isgiven by the solution of equation (9): 

F,,(x,s)  = Nx(cw), 4 - N x ( x z , 4 .  (19) 
Now, we investigate two important cases for electron spectroscopy analysis: the 

electric potential of the sample surface can have any value during electron-irradiation 
or is set at ground potential. 

5. Electron distribution in a charged target without a conducting coating 

Within the framework of Auger electron spectroscopy (AES) in this section, we are 
interested in the interaction of an electron beam that induces both surface and bulk 
chargingeffectson an insulator target. Since this technique involvesdetecting the Auger 
electrons it is sensitive to the first few atomic layers of the material and any change in 
analysis parameters influence strongly the AES data of insulators. Both Auger peak 
heights and energies are affected by the electron bombardment. During irradiation 
primary electrons penetrate inside the specimen to a depth of several microns while 
secondary electrons are emitted from the surface layer. The target surface then becomes 
positively charged under the usual operating voltage in electron probe microanalysis. 
The consequence of the interactions with the bulk is the creation of electron-hole 
pairs in the irradiated volume by the ionization of bound electrons or by excitation 
of conduction electrons followed by their trapping on localized levels. According to 
elementary theory, the number of electron-hole pairs released in the material is pro- 
portional to the energy lossof the incident electrons. The electronsejected after inelastic 
coUisions also interact with the atoms of the target. After a more or less long length of 
time a recombination process arises between the mobile primary electrons and the fixed 
positive charges created near the surface region. We now consider the mathematical 
analysis of this problem and we shall neglect for purposes of simplification some con- 
tfibutions of the interactions. Let us consider a semi-infinite insulator, with a given 
dielectric constant E which is charged by an accumulation of electrons of the primary 
beam, the target being surrounded by a vacuum. The axial component of the electric 
field E(x) induced in the specimen is calculated by using the Maxwell equation [31]. The 
procedure followed to determine the electric potential V(x)  consists in evaluating the 
contribution to V(x)  of the uniform density p of the primary electrons in the specimen 
and the density of their images symmetrically located in the vacuum characterized by 
the dielectric constant It is evident that the assumption of a uniform charge density 
is not valid for an accurate determination of the potential near the target surface. 
Nevertheless it is justified by the fact that in our case the charge distribution calculated 
by using this hypothesisisingood agreement with the Monte Carlo results. Theelectric 
field is then 

SQ. (20) 
EO with y = x  -- 

E +  Eo 

We deduce from this expression, (20), that near the surface a small decelerating field 
exists whose direction is opposite to that of the electron propagation. The variation in 
the electron penetration is therefore mainly the result of the potential distribution in the 
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region in front of the sample. These calculations are corroborated by the Monte Carlo 
simulation of Kotera and Suga [32] of the potential distribution in a charged poly- 
methylmethacrylate wafer. The existence of an inversion point for the axial field with a 
smalldeceleration field anda high negative potential near the target surface isconfumed, 
if this surface is not set at ground potential. Returning to the original transport equation 
(4) and making the diffusion approximation we can write: 

azF/ay2 + (eE(y)/W) aF/ay = [3c/(s0 - s) ]  aF/as. (21) 
The complex Fourier transform reduces the partial differential equation (21) to the 

subsidiary equation (22): 
- p * ~ -  (pye/sW)(p aF/ap + F )  = [%/(So - s)] aF/Js. (22) 

The solution of equation (22) is given by the following expression of F(p, s), the 

F(p,s) = F(0,s)exp(-*a2(s)p'). (23) 
It isalsointerestingto note that in thecaseofcharged targets, theelectrondeposition 

is characterized by a Gaussian distribution. The treatment of this problem is exactly 
similar to the determination of the solution of the electron diffusion equation in con- 
ducting materials and we can repeat the same procedure for calculating (x) and (x'). We 
suppose a hypothetical electron having an x-coordinate given by the mean value of the 
electron distribution, then the loss of energy of this particle from the electric field is 
given by 

functions F(0, s) and a(s) are determined by calculating equation (22) for F ( p ,  s): 

w, = ( P ( X ) / E ) ( ( X ) / 2  - € O S O / ( E  + €0)). (24) 

Finally, we find that the correct solution for the semi-infinite charged medium is also 
given by the general expression (19), and we remark that this approach to the treatment 
of transport is well suited for such boundary conditions. Figure 2 illustrates the changes 
of electron distribution as charge builds up in a glass target. The chosen insulating 
specimen belongs to the ternary SiOrCs20-Rb20 system. Mixed alkali silica glasses 
are known to be very good insulators having superior combinations of properties than 
could be obtained with a binary alkali silica glass. The potential of the front surface of 
the target is allowed to float under the influence of the primary beam. There is evidence 
that a breakdown process depending on the target composition or gas adsorption on the 
target surfacecan be induced by the charge accumulation. Byapproximating thecharged 
area to addition of thin charged discs with an axial symmetry, we calculate the surface 
potential as a function of the charging dose [32]. An electron dose of 1.2 x ITx C cm-2 
is required to induce the surface potential of 4.5 keV in the case of curve A of figure 2. 
In the other cases of this figure the dose of the primary particles varies linearly with the 
surface potential. From figure 2 it is clear that the charge distribution varies asym- 
metrically as a consequence of the negative image charge, which has an important effect 
upon the field distribution. We can verify that the chargingeffect may be described by 
a reduction of the beam penetration of the primary electron. A comparison with the 
results of Kotera and Suga [33] describing the same situation shows general good 
agreement between this model and the simulation of electron trajectories in a charged 
specimen with an ungrounded surface. The irradiated volume decreases as the surface 
potential increases during the charging process. The experimentally observed charge 
build-up is more rapid than the calculated rate of charging during the same recording 
time. In fact the dynamics of the charging process is more adequately described by 
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FigureZ.Depthdistributionsofelectronsinaglass 
target plotted for several values of the surface 
potential:A,Vo=4.5kV;B,Vn=4kV;C,V,,= 
3.5 kV; D, V, = 3 kV: E. Vo = 2.5 kV; F. V,, = 
2kV;G,V,= l .5kV;H,V0= lkV;I,Vo=OkV. 
The target surface is not at ground potential. The 
specimen belonging to the SiOrCs20-Rb20 sys- 
tem is irradiated by an electron beam energy of 
30 kV. 

Figure 3. Electron distributions in a glass target 
covered by aconductingfilmin the presence of an 
electric field. The CUNS A, B, C, D, E, F, G. H 
and I are plotted for doses of incident electrons 
125 times higher than in the irradiation used for 
plotting the corresponding distributions repre- 
sented in figure 2. The irradiated specimen is a 
type of glass belonging to the SiO&slO-Rb,O 
system and the energy of the incident particles is 
30 keV. 

introducing the notion of a time-dependent conductivity that rises from zero to a steady 
state conductivity and the time constant of the exponential variation of the conductivity 
is generally shorter than the recording time. 

The transport equation has been extended in the above paragraph to the study of 
multiple scatteringof electrons incharged targets. It shows that the electron distribution 
is the result of two defocusing processes originating, on the one hand, from the electric 
field and, on the other hand, from elastic collisions. Both actions tend to spread the 
lateral distribution into a Gaussian one and to decrease the range and the diffusion depth 
in the presence of a charging field. 

6. Electron distribution in a grounded charged target 

We now study the case where the insulating target is covered by a very thin grounded 
conducting film; this situation is consistent with the experimental operating conditions 
of practical interest for electron probe microanalysis. The conducting surface on top of 
the insulator modifies the electric field in the irradiated volume. The potential at the 
target surface is then zero and a large decelerating electric field appears in the region 
close to the bombarded surface. 

The corresponding mathematical problem can be treated by considering that the 
dielectric constant of the medium in front of the sample is infinite. Then the electric field 
near the target surface is given by 

E(x) = p&-l(X -so) = -zv,z/s;  (25) 
where z = x - so and V, = -psi/2& is the minimal potential in the target. This 
expression clearly shows that if a high electrical field is directed against the electron 
propagation near the surface then the electrons of the primary beam are pushed back 
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towards the surface of the grounded sample. The variation of the electron penetration 
is mainly the result of the potential distribution inside the region in front of the sample. 
The value of the electric field is increasing from a negative value at the surface and 
becomes negligible at a depth equal to the electron range in the target. We obtain the 
electron distribution by the solution of the transport equation in making the same 
diffusion approximation as before (21): 

a2F/azz + (eE(z)/W) aF/az = [3c/(sO - s)] aF/as. (26) 

One can conclude that the general expression (19) giving the electron distribution in 
a semi-infinite target is also valid in the case of a grounded target. 

The above calculation made for a grounded target shows a maximum negative 
potential much smaller than for an ungrounded target for the same dose of charges 
deposited. Figure 3 shows the charge distributions in a grounded glass target belonging 
to the SiOz-Cs20-Rb20 system. The calculated distributions explain fairly well the fact 
that all the curves that are calculated with the charging conditions represented on figure 
2 are coincident if the target is grounded. An electron dose of 1.5 X is 
required to induce the electron distribution represented by curve A of figure 3. Thus 
the potential distribution arising from the charges deposited in the target is a small 
perturbation if the specimen surface is coated by a thin metal layer at ground potential. 
In addition, the conductivity of an insulator is increased under electron irradiation and 
thusthe excessmigrating chargescan bemore easily evacuated. This remark contributes 
to the justification of the deposition of conducting films on the insulating specimens 
commonly used in electron probe microanalysis. Because of the rapid charge build-up, 
in experimental situations, the number of charges trapped over the range 3-6pm of 
curve A has a negligible influence on the steady state of the electron distribution. 

C 

7. Conclusions 

The theoretical study of charge behaviour produced by electron beam irradiation is a 
fruitful field of research to elucidate some problems encountered in various spectro- 
metries such as energy shift spectra, electromigration of ions, distortion of images, and 
deflection of primary beams. We have evaluated the effects of beam-induced charging 
of a target material on the distribution of the steady state electron implantation. The 
Boltzman transport equation is able to predict the effects of the charging of the sample 
on the electron propagation in the target. Decreases of the mean penetration depth and 
of the range of the electron, arising from a decelerating field, are substantial in the 
case of irradiation of bulk samples in the presence of the electric field created by the 
distribution of trapped charges. This result is in agreement with the experimental 
description of the motion of ionic species observed by many authors in Auger electron 
spectroscopy. Calculations based on this model can satisfactorily clarify many aspects 
of electron-induced charging related to the electron penetration and to the variance of 
the electron distribution. It can be concluded that the knowledge of these parameters is 
significant for a better interpretation of the electron probe microanalysis or Auger 
electron analysis results and permits the experimentalist to change the operating par- 
ameters such as accelerating voltage, probe inclination or size, in order to optimize the 
analysis conditions. 
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